Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2022 Apr; 59(4): 479-485
Article | IMSEAR | ID: sea-221523

ABSTRACT

Global burden of chronic wounds has increased drasticallyas they are vulnerable to bacterial infections that causes inflammation, thereby leads to a delay in the healing process. Furthermore, wound care and dressing industry is subjected to a global market of $30.4 billion by 2024. Our work entails fabrication of polymeric electrospun nanofibers loaded with different concentration of the amoxicillin (AMX) antibiotic. Biodegradable and biocompatible poly (vinyl) alcohol (PVA)/poly(meth)(methacrylate)(PMMA) polymerswere blended with different AMX concentration (100, 150, 200 and 250 mg) and fabricated by electrospinning technique. Morphology, structural properties and drug release from electrospun nanofibers depend on the different concentrations of drug incorporated in PVA:PMMA blend of polymer. Furthermore, these studies revealed drug-excipient compatibility and drug encapsulation within the nanofiber. In-vitro release study showed the AMX release time from PVA: PMMA: AMX was extended up to 7 days for AMX-250 with an initial burst release of 70% and further sustained drug release. Electrospun nanofibers of PVA:PMMA:AMX showed greater zone of inhibition of S. aureus as 2.1±0.4 cm for 100-AMX, 2.3±0.5 cm for 150-AMX, 2.4±0.1 for 200-AMX and 3.4±0.3 cm for 250-AMX. These results demonstrate that AMX retains the anti-bacterial activity and hence can be used as a potential wound dressing candidate.

2.
Braz. J. Pharm. Sci. (Online) ; 55: e17395, 2019. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1055298

ABSTRACT

The foremost aim of the current research was to prolong and sustain the release of erythromycin (ERY) by preparing a solid lipid nanoparticles (SLNs)-based gel formulation for the safe and effective treatment of acne. ERY-loaded SLNs were developed, and various process variables were optimized with respect to particle size, zeta potential, and entrapment efficiency using the Taguchi model. The average particle size, PDI, zeta potential, drug entrapment efficiency, and drug loading of optimized SLN (F4) were found to be 176.2±1.82 nm, 0.275±0.011, -34.0±0.84, 73.56%, and 69.74% respectively. The optimized SLN (F4) was successfully incorporated into the carbopol-based hydrogel. The in vitro release of ERY from the SLN gel and plain gel were compared and found to be 90.94% and 87.94% respectively. In vitro study of ERY-loaded SLN gel showed sustained delivery of drug from formulation thus enhancing the antimicrobial activity after 30 hours when compared to ERY plain gel.

3.
Braz. j. pharm. sci ; 48(4): 759-772, Oct.-Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-665873

ABSTRACT

A large majority of new chemical entities and many existing drug molecules exhibit poor aqueous solubility, which may limit their potential use in developing drug formulations, with optimum bioavailability. One of the approaches to improve the solubility of a poorly water soluble drug and eventually its bioavailability is complexation with agents like humic acid (HA), fulvic acid (FA), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and caffeine (Caff). The current work emphasized at employing these agents to prepare different complexes and their in vitro/in vivo assessment. All the complexes evaluated for their complexation efficiency and authenticated by molecular modeling; conformational analysis, differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and mass spectroscopy. Furthermore, the complexes were assessed in an in vivo, rat vaginal model for their efficacy in treatment of vaginal candidiasis. Amongst the five tested complexes, fulvic acid-itraconazole complex yielded better solubility as well as in vivo efficacy and therefore may further be explored for developing a commercial formulation for treating vaginal candidiasis.


A maioria das novas entidades químicas e muitas moléculas de fármacos existentes apresenta fraca solubilidade em água, o que pode limitar seu uso potencial no desenvolvimento de formulações com biodisponibilidade ideal. Uma das abordagens para melhorar a solubilidade de um fármaco pouco solúvel em água e, eventualmente, a sua biodisponibilidade é a complexação com agentes como o ácido húmico (HA), ácido fúlvico (FA), β-ciclodextrina (β-CD), 2-hidroxipropil-β-ciclodextrina (HP-β-CD) e cafeína (Caff). O presente trabalho baseia-se no uso desses agentes para preparar diferentes complexos e suas avaliações in vitro/in vivo. Todos os complexos foram avaliados quanto à eficiência de complexação por modelação molecular, análise conformacional, calorimetria de varredura diferencial (DSC), difração de raios-X (XRD), ressonância magnética nuclear (RMN) e espectroscopia de massas. Além disso, os complexos foram avaliados in vivo, em ratas, no tocante à sua eficácia no tratamento de candidíase vaginal. Entre os cinco complexos testados, o complexo de ácido fúlvico-itraconazol foi o que apresentou melhor solubilidade, bem como melhor eficácia in vivo e, portanto, pode ser explorado para o desenvolvimento de uma formulação comercial para o tratamento de candidíase vaginal.


Subject(s)
Rats , In Vitro Techniques/instrumentation , Candidiasis, Vulvovaginal/classification , Itraconazole/analysis , Solubility , Candidiasis, Vulvovaginal/prevention & control , Chemistry, Pharmaceutical/classification
SELECTION OF CITATIONS
SEARCH DETAIL